## Center for Scientific Computation And Mathematical Modeling <br> University of Maryland College Park

On a multiscale representation of images
as hierarchy of edges

## Eitan Tadmor

Center for Scientific Computation and Mathematical Modeling (CSCAMM) Department of Mathematics and Institute for Physical Science \& Technology

University of Maryland

With S. Nezzar and L. Vese (UCLA)

## Images as $L^{2}$ objects

$f \in L^{2}\left(\operatorname{IR}^{2}\right)$, (grayscale) $\mathbf{f}=\left(f_{1}, f_{2}, f_{3}\right) \in L^{2}\left(\operatorname{IR}^{2}\right)^{3}$, (colored)
Noticeable features: edges.
well quantified in the smaller BV class

Homogeneous regions, oscillatory patterns of noise or texture.

Images in intermediate spaces 'between' $L^{2}\left(\mathbb{R}^{2}\right)$ and $B V\left(\mathbb{R}^{2}\right)$
Q. Images in intermediate spaces 'between' $B V^{*}\left(\mathbb{R}^{2}\right)$ and $B V\left(\mathbb{R}^{2}\right)$ ?

- Intermediate spaces realized by interpolation

Starting with $Y \subset X$, to form a scale of intermediate spaces, $(X, Y)_{\theta}$, ranging from $(X, Y)_{\theta=0}=X$ to $(X, Y)_{\theta=1}=Y$.

## Regularity functionals

- The $K$ functional: $K(f, \eta ; X, Y):=\inf _{u+v=f}\left\{\|v\|_{X}+\eta\|u\|_{Y}\right\}$.

The behavior of $K(\cdot, \eta)$ as $\eta \downarrow 0$ :

$$
(X, Y)_{\theta}:=\left\{f \mid \eta^{-\theta} K(f, \eta ; X, Y) \leq \text { Const }\right\}
$$

Lorentz - scale : $(X, Y)_{\theta, q}:=\eta^{-\theta} K(f, \eta ; X, Y) \in L^{q}(d \eta / \eta)$

- Image processing: The $J$ functional intermediate spaces between $X=L^{2}(\Omega)$ and $Y=B V(\Omega)$

$$
J(f, \lambda):=\inf _{u+v=f}\left\{\lambda\|v\|_{L^{2}}^{2}+\|u\|_{B V}\right\}
$$

$J(f, \lambda)$ measures how well an $L^{2}$ object can be approximated by its BV features, $J(f, \lambda) \sim \lambda^{\theta}$ as $\lambda \uparrow \infty$

- Rudin-Osher-Fatemi: $\left[u_{\lambda}, v_{\lambda}\right]=\operatorname{arginf} J(f, \lambda)$; $\lambda$ as a fixed threshold for cutting out the noisy part of $f$


## Hierarchical ( $B V, L^{2}$ ) decomposition

$$
\begin{equation*}
f=u_{\lambda}+v_{\lambda}, \quad\left[u_{\lambda}, v_{\lambda}\right]=\underset{u+v=f}{\arg \inf _{v}} J\left(f, \lambda ; B V, L^{2}\right) . \tag{1}
\end{equation*}
$$

- $u_{\lambda}$ extracts the edges; $v_{\lambda}$ captures textures
- Distinction is scale dependent - 'texture' at a $\lambda$-scale consists of significant edges when viewed under a refined $2 \lambda$-scale

$$
\begin{equation*}
v_{\lambda}=u_{2 \lambda}+v_{2 \lambda}, \quad\left[u_{2 \lambda}, v_{2 \lambda}\right]=\underset{u+v=v_{\lambda}}{\arg \inf _{\lambda}} J\left(v_{\lambda}, 2 \lambda\right) . \tag{2}
\end{equation*}
$$

- A better two-scale representation: $f \approx u_{\lambda}+u_{2 \lambda}$

This process can continue...

## Hierarchical ( $B V, L^{2}$ ) decomposition...

Starting with an initial scale $\lambda=\lambda_{0}$,

$$
f=u_{0}+v_{0}, \quad\left[u_{0}, v_{0}\right]=\underset{u+v=f}{\arg \inf } J\left(f, \lambda_{0}\right)
$$

successive application of dyadic refinement: $\quad \lambda_{j}:=\lambda_{0} 2^{j}$
$v_{j}=u_{j+1}+v_{j+1}, \quad\left[u_{j+1}, v_{j+1}\right]:=\underset{u+v=v_{j}}{\arg \inf _{j}} J\left(v_{j}, \lambda_{j+1}\right), j=0,1, \ldots$,

After $k$ hierarchical step:

$$
\begin{aligned}
f & =u_{0}+v_{0}= \\
& =u_{0}+u_{1}+v_{1}= \\
& =\cdots \cdots \cdot \quad= \\
& =u_{0}+u_{1}+\cdots+u_{k}+v_{k} .
\end{aligned}
$$

## Hierarchical ( $B V, L^{2}$ ) decomposition...

- A description of $f$ in an intermediate scale of spaces ( $B V, L^{2}$ )

$$
f \sim \sum_{j=1}^{k} u_{j}+v_{k}
$$

- The multi-layered ( $B V, L^{2}$ ) expansion, $f \sim \sum_{j} u_{j}$
particularly suitable for image representations
- Applications of multi-layered representations:
[Meyer,Averbuch,Coifman]
- Multi-layered representation is
(i) hierarchical and (ii) essentially nonlinear

Convergence of the ( $B V, L^{2}$ ) expansion
Compare the minimizer $v_{j}=u_{j+1}+v_{j+1}$ vs. the trivial $\left[0, v_{j}\right]$ :

$$
J\left(v_{j}, \lambda_{j+1}\right)=\left\|u_{j+1}\right\|_{B V}+\lambda_{j+1}\left\|v_{j+1}\right\|_{2}^{2} \leq \lambda_{j+1}\left\|v_{j}\right\|_{2}^{2}
$$

$u_{j}$ 's capture the BV scale $\sim \lambda_{j}:=\lambda_{0} 2^{j}: \quad \sum_{j} \frac{1}{\lambda_{j}}\left\|u_{j}\right\|_{B V} \leq\|f\|_{2}^{2}$

$$
f=\sum_{j=0}^{\infty} u_{j}: \quad\left\|f-\sum_{j=0}^{k} u_{j}\right\|_{W^{-1, \infty}}=\left\|v_{k+1}\right\|_{W^{-1, \infty}}=\frac{1}{\lambda_{k+1}},
$$

- The geometric convergence rate is universal
- Energy decomposition: $\sum_{j=0}^{\infty}\left[\frac{1}{\lambda_{j}}\left\|u_{j}\right\|_{B V}+\left\|u_{j}\right\|_{2}^{2}\right]=\|f\|_{2}^{2}$
key observation: squaring the refinement step, $v_{j+1}+u_{j+1}=v_{j}$,

$$
\begin{aligned}
& 2\left(u_{j+1}, v_{j+1}\right)+\left\|u_{j+1}\right\|_{2}^{2}+\left\|v_{j+1}\right\|_{2}^{2}=\left\|v_{j}\right\|_{2}^{2}, \\
\Longrightarrow \quad & \frac{1}{\lambda_{j}}\left\|u_{j+1}\right\|_{B V}+\left\|u_{j+1}\right\|_{2}^{2}=\left\|v_{j}\right\|_{2}^{2}-\left\|v_{j+1}\right\|_{2}^{2}, \quad j=-1,0,1, \ldots
\end{aligned}
$$

## Initialization

- $\lambda_{0}$ should capture smallest scale in $f: \frac{1}{2 \lambda_{0}} \leq\|f\|_{W^{-1, \infty}} \leq \frac{1}{\lambda_{0}}$
- To capture the missing larger scales:
$v_{j}=u_{j-1}+v_{j-1}, \quad\left[u_{j-1}, v_{j-1}\right]:=\underset{u+v=v_{j}}{\arg \inf _{j}} J\left(v_{j}, \lambda_{j-1}\right), j=0,-1, \ldots$,
- Running through smaller scales, $\lambda_{j}=\lambda_{0} 2^{j}, j \downarrow$ :

Exhaust the oscillatory part of $f: \lambda_{0} 2^{-k_{0}}\|f\|_{W^{-1, \infty}} \leq 1$.

$$
\begin{aligned}
v_{0} & =u_{-1}+v_{-1}= \\
& =u_{-1}+u_{-2}+v_{-2}= \\
& =\cdots \cdots \cdots \quad= \\
& =u_{-1}+u_{-2}+\ldots \ldots+u_{-k_{0}}
\end{aligned}
$$

The multiscale ( $B V, L^{2}$ ) expansion now reads:

$$
f=\sum_{j=-k_{0}}^{\infty} u_{j}
$$

## Numerical discretization

- Euler-Lagrange equations:

$$
u_{\lambda}-\frac{1}{2 \lambda} \operatorname{div}\left(\frac{\nabla u_{\lambda}}{\left|\nabla u_{\lambda}\right|}\right)=f, \quad \frac{\partial u_{\lambda}}{\partial n \mid \partial \Omega}=0
$$

Fixed point Gauss-Seidel iterations to solve $\left.\begin{array}{|l|}f_{\text {new }} \longleftarrow f_{\text {current }}-u_{\lambda} \\ \lambda_{\text {new }} \longleftarrow 2 \lambda_{\text {current }}\end{array}\right]$

$$
\begin{aligned}
u_{i, j}=f_{i, j} & +\frac{1}{2 \lambda} D_{-x}\left[\frac{1}{\sqrt{\varepsilon^{2}+\left(D_{+x} u_{i, j}\right)^{2}+\left(D_{0 y} u_{i, j}\right)^{2}}} D_{+x} u_{i, j}\right] \\
& +\frac{1}{2 \lambda} D_{-y}\left[\frac{1}{\sqrt{\varepsilon^{2}+\left(D_{0 x} u_{i, j}\right)^{2}+\left(D_{+y} u_{i, j}\right)^{2}}} D_{+y} u_{i, j}\right]
\end{aligned}
$$

$$
u_{j+1}-\frac{1}{2 \lambda_{j+1}} \operatorname{div}\left(\frac{\nabla u_{j+1}}{\left|\nabla u_{j+1}\right|}\right)=-\frac{1}{2 \lambda_{j}} \operatorname{div}\left(\frac{\nabla u_{j}}{\left|\nabla u_{j}\right|}\right)
$$

## Fingerprint



Decomposition of an initial image of a fingerprint for 5 steps with $\lambda_{0}=.01$.

## Barbara I



Successive decompositions of an image of a woman with $\lambda_{0}=$ . 0005.

## Barbara II



Decomposition of an initial image of a woman for 10 steps. Parameters: $\lambda_{0}=.005$, and $\lambda_{j}=\lambda_{0} 2^{j}$.

## Barbara: edges and texture



Representation of each $u_{j}, v_{j}$, for $0 \leq j \leq 6$. Parameters: $\lambda_{0}=$ .005, and $\lambda_{j}=\lambda_{0} 2^{j}$

## Galaxy



Decomposition of an image of a galaxy for 10 steps. Parameters: $\lambda_{0}=.001$, and $\lambda_{j}=\lambda_{0} 2^{j}$. The last two figures illustrate separation of scales.

## Examples of ( $B V, L^{2}$ ) expansions

$$
\begin{gathered}
f(x)=\alpha \chi_{B_{R}}(x):= \begin{cases}1 & |x| \leq R \\
0 & x \in \Omega \backslash B_{R}\end{cases} \\
u_{\lambda}=\left(\alpha-\frac{1}{\lambda R}\right)_{+} \chi_{B_{R}}+\frac{1}{\lambda R} \frac{\left|B_{R}\right|}{\left|\Omega \backslash B_{R}\right|} \chi_{\Omega \backslash B_{R},} v_{\lambda}:=f-u_{\lambda}
\end{gathered}
$$

Natural boundary condition, $\partial u_{\lambda} / \partial n_{\mid \partial \Omega}=0$, implies $\int_{\Omega} v_{\lambda} d x=0$

- No localization: non-zero constant of $v_{\lambda}$ outside the ball $B_{R}$

The general hierarchical step then reads

$$
\begin{aligned}
u_{j} & =\left(\frac{1}{\lambda_{j-1} R}-\frac{1}{\lambda_{j} R}\right) \chi_{B_{R}}+\left(\frac{1}{\lambda_{j} R}-\frac{1}{\lambda_{j-1} R}\right) \frac{\left|B_{R}\right|}{\left|\Omega \backslash B_{R}\right|} \chi_{\Omega \backslash B_{R}} \\
v_{j} & =\frac{1}{\lambda_{j} R} \chi_{B_{R}}-\frac{1}{\lambda_{j} R} \frac{\left|B_{R}\right|}{\left|\Omega \backslash B_{R}\right|} \chi_{\Omega \backslash B_{R}} \sim 2^{-j} \text { in } L^{2} \ldots
\end{aligned}
$$

## Localization

- The ( $B V, L^{2}$ ) hierarchical expansion

$$
\begin{aligned}
& \alpha \chi_{B_{R}}(x) \sim \sum_{j=0}^{k} u_{j}=\left(\alpha-\frac{1}{\lambda_{k} R}\right) \chi_{B_{R}}+\frac{1}{\lambda_{k} R} \frac{\left|B_{R}\right|}{\left|\Omega \backslash B_{R}\right|} \chi_{\Omega \backslash B_{R}} \\
& f-\sum^{k} u_{j} \text { decays outside } \operatorname{supp}(f)
\end{aligned}
$$

Strong convergence: geometrically vanishing error, $\left\|v_{k}\right\|_{2} \sim \frac{1}{\lambda_{k}}$
Q. Localization: an image $f=g \oplus h$ with $\operatorname{supp}(g) \cap \operatorname{supp}(h)=\emptyset$; assume $g \sim \sum g_{j}$ and $h \sim \sum h_{j}$.
What about $\sum g_{j}+h_{j}$ as a hierarchical expansion of $f$ ?
A. $\left\|f-\sum^{k}\left(g_{j}+h_{j}\right)\right\|_{W^{-1, \infty}} \leq \frac{1}{\lambda_{k}}$; quantify strong convergence;

The behavior of $\operatorname{supp}\left(g_{j}\right)$ and $\operatorname{supp}\left(h_{j}\right)$ relative to $\operatorname{supp}(f)$.

- Localization: the spacial case $(g, h)=(f, 0)$

An example: $f=\chi_{A}(x)+p\left(2^{N} x\right) \chi_{B}(x), A \cap B=\emptyset$
$h \equiv h_{N}=p\left(2^{N} x\right) \chi_{B}(x)-$ the 'noisy part' of $f$ with increasing $N$ $g=\chi_{A}(x)$ - the 'essential feature' in $f$.

If $2^{N} \gg \lambda$, then the ' $u$-component' of the $J(h, \lambda)$ minimizer fails to separate the essential part of $h$, since $\|h\|_{W^{-1, \infty}} \sim 2^{-N}<\frac{1}{2 \lambda}$.

Need at least $k \sim N$ terms for $h \sim \sum^{k} h_{j}$ to remove the noisy part.
The expansion of $g$ is independent of $N:\left\|g-\sum^{k} g_{j}\right\| \sim \frac{1}{\lambda_{k}}$
We are led to...
Q. How does $\sum^{k}\left(g_{j}+h_{j}\right)$ compare with $f \sim \sum^{k} u_{j}$ ?
A. To introduce a localized hierarchical expansion, adapted to the behavior of $f$ in each subdomain.

## Colored images



Decomposition of a vector-valued image of flowers for 10 steps. Parameters: $\lambda_{0}=.00025$, and $\lambda_{j}=\lambda_{0} 2^{j}$.

## The ' $u+v^{\prime}$ models and beyond

- The regularized Mumford-Shah by Ambrosio and Tortorelli:
$\inf _{\{w, u, v \mid u+v=f\}}\left\{\int_{\Omega} w^{2}\left[|\nabla u|^{2}+|v|^{2}\right] d x+\lambda\left[\varepsilon\|\nabla w\|_{L^{2}}^{2}+\frac{\|1-w\|_{L^{2}}^{2}}{\varepsilon}\right]\right\}$.
- Intermediate spaces $\left(L^{2}, B_{1}^{1,1}\right)_{\theta}$ :
extract and separate scales in terms of a wavelet decomposition $f=\sum \widehat{f}_{j k} \psi_{j k}$.
- decomposition into hierarchy of dyadic scales
- Wavelet shrinkage based on a 'greedy' approach:

DeVore-Lucier: $\quad f \approx \sum_{\left|\widehat{f}_{j k}\right| \geq \eta} \widehat{f}_{j k} \psi_{j k}$

- No such simple hierarchical description of $\left(L^{2}, B V\right)_{\theta}$
- But the smaller $B_{1}^{1,1}$ fails to capture sharp edges.

Ongoing work: beyond 'u+v' models

- Blurred images: $K$ is a blurring kernel

$$
\begin{gathered}
J_{K}\left(f, \lambda ; B V, L^{2}\right):=\inf _{u \in B V}\left\{\lambda\|f-K u\|_{L^{2}(\Omega)}^{2}+\|u\|_{B V(\Omega)}\right\} . \\
f=K u_{0}+K u_{1}+\ldots+K u_{k-1}+K u_{k}+v_{k}, \quad\|f\|_{2}^{2}=\sum_{j=0}^{\infty}\left[\frac{1}{\lambda_{j}}\left\|u_{j}\right\|_{B V}+\left\|K u_{j}\right\|_{2}^{2}\right]
\end{gathered}
$$

- Multiplicative noise: $f=u_{0} u_{1} \ldots u_{k} \times v_{k}$

$$
M\left(f, \lambda ; B V, L^{2}\right):=\inf _{u \in B V_{+}(\Omega)}\left\{\lambda\left\|\frac{f}{u}-1\right\|_{L^{2}(\Omega)}^{2}+\|u\|_{B V(\Omega)}\right\} .
$$

- Hierarchical ( $S B V, L^{2}$ ) decomposition (Ambrosio and Tortorelli)

$$
A T^{\varepsilon}(f, \lambda):=\inf _{\{w, u, v \mid u+v=f\}}\left\{\int_{\Omega}\left[w^{2}|\nabla u|^{2}+|v|^{2}\right] d x+\lambda\left[\varepsilon\|\nabla w\|_{L^{2}}^{2}+\frac{\|w-1\|_{L^{2}}^{2}}{\varepsilon}\right]\right\} .
$$

Edge detectors $1-w_{j}=1-w_{\lambda_{j}}$, supported along the boundaries enclosing the $u_{j}$ 's.


Figure 4.21: The sum of the $w_{i}$ 's using the Ambrosio-Tortorelli approximation of the image of a woman, using 10 steps. Parameters: $\beta_{0}=.25, \alpha=5, \rho=.0002$, and $\beta_{k}=2^{k} \beta_{0}$

# Center for Scientific Computation And Mathematical Modeling 

University of Maryland College Park

## THANK YOU

WWW.CSCAMM.UMD.EDU/~TADMOR

